Влияние положения тела на ЭКГ

План расшифровки ЭКГ

Электрокардиограмма отражает только электрические процессы в миокарде: деполяризацию (возбуждение) и реполяризацию (восстановление) клеток миокарда.

Соотношение интервалов ЭКГ с фазами сердечного цикла (систола и диастола желудочков).

В норме деполяризация приводит к сокращению мышечной клетки, а реполяризация — к расслаблению.

Для упрощения дальше я буду вместо “деполяризации-реполяризации” иногда использовать “сокращение-расслабление”, хотя это не совсем точно: существует понятие “электромеханическая диссоциация“, при которой деполяризация и реполяризация миокарда не приводят к его видимому сокращению и расслаблению.

Элементы нормальной ЭКГ

Прежде, чем перейти к расшифровке ЭКГ, нужно разобраться, из каких элементов она состоит.

image Зубцы и интервалы на ЭКГ. Любопытно, что за рубежом интервал P-Q обычно называют P-R.

Любая ЭКГ состоит из зубцов, сегментов и интервалов.

ЗУБЦЫ — это выпуклости и вогнутости на электрокардиограмме. На ЭКГ выделяют следующие зубцы:

  • P (сокращение предсердий),
  • Q, R, S (все 3 зубца характеризуют сокращение желудочков),
  • T (расслабление желудочков),
  • U (непостоянный зубец, регистрируется редко).

image Зубцы, сегменты и интервалы на ЭКГ. Обратите внимание на большие и мелкие клеточки (о них ниже).

Зубцы комплекса QRS

Поскольку миокард желудочков массивнее миокарда предсердий и имеет не только стенки, но и массивную межжелудочковую перегородку, то распространение возбуждения в нем характеризуется появлением сложного комплекса QRS на ЭКГ.

Как правильно выделить в нем зубцы?

Прежде всего оценивают амплитуду (размеры) отдельных зубцов комплекса QRS. Если амплитуда превышает 5 мм, зубец обозначают заглавной (большой) буквой Q, R или S; если же амплитуда меньше 5 мм, то строчной (маленькой): q, r или s.

Зубцом R (r) называют любой положительный (направленный вверх) зубец, который входит в комплекс QRS. Если зубцов несколько, последующие зубцы обозначают штрихами: R, R’, R” и т. д.

Отрицательный (направленный вниз) зубец комплекса QRS, находящийся перед зубцом R, обозначается как Q (q), а после — как S (s). Если же в комплексе QRS совсем нет положительных зубцов, то желудочковый комплекс обозначают как QS.

Варианты комплекса QRS.

В норме:

зубец Q отражает деполяризацию межжелудочковой перегородки (возбуждается межжелудочковая перегородка)

зубец R — деполяризацию основной массы миокарда желудочков (возбуждается верхушка сердца и прилегающие к ней области)

зубец S — деполяризацию базальных (т.е. возле предсердий) отделов межжелудочковой перегородки (возбуждается основание сердца)

Зубец RV1, V2 отражает возбуждение межжелудочковой перегородки,

а RV4, V5, V6 — возбуждение мышцы левого и правого желудочков.

Омертвение участков миокарда (например, при инфаркте миокарда) вызывает расширение и углубление зубца Q, поэтому на этот зубец всегда обращают пристальное внимание.

Анализ ЭКГ

Общая схема расшифровки ЭКГ

  1. Проверка правильности регистрации ЭКГ.
  2. Анализ сердечного ритма и проводимости:
    • оценка регулярности сердечных сокращений,
    • подсчет частоты сердечных сокращений (ЧСС),
    • определение источника возбуждения,
    • оценка проводимости.
  3. Определение электрической оси сердца.
  4. Анализ предсердного зубца P и интервала P — Q.
  5. Анализ желудочкового комплекса QRST:
    • анализ комплекса QRS,
    • анализ сегмента RS — T,
    • анализ зубца T,
    • анализ интервала Q — T.
  6. Электрокардиографическое заключение.

Нормальная электрокардиограмма.

1) Проверка правильности регистрации ЭКГ

В начале каждой ЭКГ-ленты должен иметься калибровочный сигнал — так называемый контрольный милливольт. Для этого в начале записи подается стандартное напряжение в 1 милливольт, которое должно отобразить на ленте отклонение в 10 мм. Без калибровочного сигнала запись ЭКГ считается неправильной.

В норме, по крайней мере в одном из стандартных или усиленных отведений от конечностей, амплитуда должна превышать 5 мм, а в грудных отведениях — 8 мм. Если амплитуда ниже, это называется сниженный вольтаж ЭКГ, который бывает при некоторых патологических состояниях.

2) Анализ сердечного ритма и проводимости:

  1. оценка регулярности сердечных сокращений

    Регулярность ритма оценивается по интервалам R-R. Если зубцы находятся на равном расстоянии друг от друга, ритм называется регулярным, или правильным. Допускается разброс длительности отдельных интервалов R-R не более ± 10% от средней их длительности. Если ритм синусовый, он обычно является правильным.

  2. подсчет частоты сердечных сокращений (ЧСС)

    На ЭКГ-пленке напечатаны большие квадраты, каждый из которых включает в себя 25 маленьких квадратиков (5 по вертикали x 5 по горизонтали).

    Для быстрого подсчета ЧСС при правильном ритме считают число больших квадратов между двумя соседними зубцами R — R.

    На скорости 25 мм/с каждая маленькая клеточка равна 0.04 c,

    а на скорости 50 мм/с — 0.02 с.

    Это используется для определения длительности зубцов и интервалов.

    При неправильном ритме обычно считают максимальную и минимальную ЧСС согласно длительности самого маленького и самого большого интервала R-R соответственно.

  3. определение источника возбуждения

    Другими словами, ищут, где находится водитель ритма, который вызывает сокращения предсердий и желудочков.

    Иногда это один из самых сложных этапов, потому что различные нарушения возбудимости и проводимости могут очень запутанно сочетаться, что способно привести к неправильному диагнозу и неправильному лечению.

    Чтобы правильно определять источник возбуждения на ЭКГ, нужно хорошо знать проводящую систему сердца.

    Признаки на ЭКГ:

    • во II стандартном отведении зубцы P всегда положительные и находятся перед каждым комплексом QRS,
    • зубцы P в одном и том же отведении имеют постоянную одинаковую форму.

    Зубец P при синусовом ритме.

    ПРЕДСЕРДНЫЙ ритм. Если источник возбуждения находится в нижних отделах предсердий, то волна возбуждения распространяется на предсердия снизу вверх (ретроградно), поэтому:

    • во II и III отведениях зубцы P отрицательные,
    • зубцы P есть перед каждым комплексом QRS.

    Зубец P при предсердном ритме.

    Ритмы из АВ-соединения. Если водитель ритма находится в атрио-вентрикулярном (предсердно-желудочковом узле) узле, то желудочки возбуждаются как обычно (сверху вниз), а предсердия — ретроградно (т.е. снизу вверх).

    При этом на ЭКГ:

    • зубцы P могут отсутствовать, потому что наслаиваются на нормальные комплексы QRS,
    • зубцы P могут быть отрицательными, располагаясь после комплекса QRS.

    Ритм из AV-соединения, наложение зубца P на комплекс QRS.

    Ритм из AV-соединения, зубец P находится после комплекса QRS.

    ЧСС при ритме из АВ-соединения меньше синусового ритма и равна примерно 40-60 ударов в минуту.

    Желудочковый, или ИДИОВЕНТРИКУЛЯРНЫЙ, ритм

    В этом случае источником ритма является проводящая система желудочков.

    Возбуждение распространяется по желудочкам неправильными путями и потому медленее. Особенности идиовентрикулярного ритма:

    • комплексы QRS расширены и деформированы (выглядят “страшновато”). В норме длительность комплекса QRS равна 0.06-0.10 с, поэтому при таком ритме QRS превышает 0.12 c.
    • нет никакой закономерности между комплексами QRS и зубцами P, потому что АВ-соединение не выпускает импульсы из желудочков, а предсердия могут возбуждаться из синусового узла, как и в норме.
    • ЧСС менее 40 ударов в минуту.

    Идиовентрикулярный ритм. Зубец P не связан с комплексом QRS.

  4. оценка проводимости.

    Для правильного учета проводимости учитывают скорость записи.

    Для оценки проводимости измеряют:

    • длительность зубца P (отражает скорость проведения импульса по предсердиям), в норме до 0.1 c.
    • длительность интервала P — Q (отражает скорость проведения импульса от предсердий до миокарда желудочков); интервал P — Q = (зубец P) + (сегмент P — Q). В норме 0.12-0.2 с.
    • длительность комплекса QRS (отражает распространение возбуждения по желудочкам). В норме 0.06-0.1 с.
    • интервал внутреннего отклонения в отведениях V1 и V6. Это время между началом комплекса QRS и зубцом R. В норме в V1 до 0.03 с и в V6 до 0.05 с. Используется в основном для распознавания блокад ножек пучка Гиса и для определения источника возбуждения в желудочках в случае желудочковой экстрасистолы (внеочередного сокращения сердца).

    Измерение интервала внутреннего отклонения.

3) Определение электрической оси сердца.

4) Анализ предсердного зубца P.

  • В норме в отведениях I, II, aVF, V2 — V6 зубец P всегда положительный.
  • В отведениях III, aVL, V1 зубец P может быть положительным или двухфазным (часть зубца положительная, часть — отрицательная).
  • В отведении aVR зубец P всегда отрицательный.
  • В норме длительность зубца P не превышает 0.1 c, а его амплитуда — 1.5 — 2.5 мм.

Патологические отклонения зубца P:

  • Заостренные высокие зубцы P нормальной продолжительности в отведениях II, III, aVF характерны для гипертрофии правого предсердия, например, при “легочном сердце”.
  • Расщепленный с 2 вершинами, расширенный зубец P в отведениях I, aVL, V5, V6 характерен для гипертрофии левого предсердия, например, при пороках митрального клапана.

Формирование зубца P (P-pulmonale) при гипертрофии правого предсердия.

Формирование зубца P (P-mitrale) при гипертрофии левого предсердия.

4) Анализ интервала P-Q:

в норме 0.12-0.20 с.

Увеличение данного интервала бывает при нарушенном проведении импульсов через предсердно-желудочковый узел (атриовентрикулярная блокада, AV-блокада).

AV-блокада бывает 3 степеней:

  • I степень — интервал P-Q увеличен, но каждому зубцу P соответствует свой комплекс QRS (выпадения комплексов нет).
  • II степень — комплексы QRS частично выпадают, т.е. не всем зубцам P соответствует свой комплекс QRS.
  • III степень — полная блокада проведения в AV-узле. Предсердия и желудочки сокращаются в собственном ритме, независимо друг от друга. Т.е. возникает идиовентрикулярный ритм.

5) Анализ желудочкового комплекса QRST:

  1. анализ комплекса QRS.

    • Максимальная длительность желудочкового комплекса равна 0.07-0.09 с (до 0.10 с).
    • Длительность увеличивается при любых блокадах ножек пучка Гиса.
    • В норме зубец Q может регистрироваться во всех стандартных и усиленных отведениях от конечностей, а также в V4-V6.
    • Амплитуда зубца Q в норме не превышает 1/4 высоты зубца R, а длительность — 0.03 с.
    • В отведении aVR в норме бывает глубокий и широкий зубец Q и даже комплекс QS.
    • Зубец R, как и Q, может регистрироваться во всех стандартных и усиленных отведениях от конечностей.
    • От V1 до V4 амплитуда нарастает (при этом зубец rV1 может отсутствовать), а затем снижается в V5 и V6.
    • Зубец S может быть самой разной амплитуды, но обычно не больше 20 мм.
    • Зубец S снижается от V1 до V4, а в V5-V6 даже может отсутствовать.
    • В отведении V3 (или между V2 — V4) обычно регистрируется “переходная зона” (равенство зубцов R и S).
  2. анализ сегмента RS — T

    • Cегмент S-T (RS-T) является отрезком от конца комплекса QRS до начала зубца T. — — Сегмент S-T особенно внимательно анализируют при ИБС, так как он отражает недостаток кислорода (ишемию) в миокарде.
    • В норме сегмент S-T находится в отведениях от конечностей на изолинии (± 0.5 мм).
    • В отведениях V1-V3 возможно смещение сегмента S-T вверх (не более 2 мм), а в V4-V6 — вниз (не более 0.5 мм).
    • Точка перехода комплекса QRS в сегмент S-T называется точкой j (от слова junction — соединение).
    • Степень отклонения точки j от изолинии используется, например, для диагностики ишемии миокарда.
  3. анализ зубца T.

    • Зубец T отражает процесс реполяризации миокарда желудочков.
    • В большинстве отведений, где регистрируется высокий R, зубец T также положительный.
    • В норме зубец T всегда положительный в I, II, aVF, V2-V6, причем TI> TIII, а TV6 > TV1.
    • В aVR зубец T всегда отрицательный.
  4. анализ интервала Q — T.

    • Интервал Q-T называют электрической систолой желудочков, потому что в это время возбуждаются все отделы желудочков сердца.
    • Иногда после зубца T регистрируется небольшой зубец U, который образуется из-за кратковременной повышеной возбудимости миокарда желудочков после их реполяризации.

6) Электрокардиографическое заключение. Должно включать:

  1. Источник ритма (синусовый или нет).
  2. Регулярность ритма (правильный или нет). Обычно синусовый ритм является правильным, хотя возможна дыхательная аритмия.
  3. ЧСС.
  4. Положение электрической оси сердца.
  5. Наличие 4 синдромов:
    • нарушение ритма
    • нарушение проводимости
    • гипертрофия и/или перегрузка желудочков и предсердий
    • повреждение миокарда (ишемия, дистрофия, некрозы, рубцы)

Помехи на ЭКГ

В связи с частыми вопросами в комментариях насчет вида ЭКГ расскажу о помехах, которые могут быть на электрокардиограмме:

Три типа помех на ЭКГ (пояснение ниже).

Алгоритм анализа ЭКГ: методика определения и основные нормативы

Другие полезные статьи Электрокардиограмма в 12 стандартных отведениях у мужчины 26 лет

Электрокардиогра́фия — методика регистрации и исследования электрических полей, образующихся при работе сердца. Электрокардиография представляет собой относительно недорогой, но ценный метод электрофизиологической инструментальной диагностики в кардиологии.

Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ).

История

  • В XIX веке стало ясно, что сердце во время своей работы производит некоторое количество электричества. Первые электрокардиограммы были записаны Габриелем Липпманом с использованием ртутного электрометра.

Кривые Липпмана имели монофазный характер, лишь отдалённо напоминая современные ЭКГ.

  • В 1872 году Александр Муирхед , как сообщается, прикрепил провода к запястью пациента с лихорадкой, чтобы получить электронную запись его сердцебиения[1].
  • В 1882 году Джон Бурдон-Сандерсон , работавший с лягушками, первым понял, что интервал между вариациями потенциала не был электрически неподвижным, и ввёл термин «изоэлектрический интервал» для этого периода[2].
  • В 1887 году Август Уоллер[3] изобрёл ЭКГ-аппарат, состоящий из капиллярного электрометра Липпмана , прикрепленного к проектору. След от сердцебиения проецировался на фотопластинку, которая сама была прикреплена к игрушечному поезду. Это позволило регистрировать сердцебиение в режиме реального времени.
  • В 1895 году Виллем Эйнтховен ввёл современное обозначение зубцов ЭКГ и описал некоторые нарушения в работе сердца. Он обозначил буквы P, Q, R, S и T в качестве отклонения от теоретической формы волны, которую он создал, используя уравнения. Эти уравнения корректировали фактическую форму волны, полученную с помощью капиллярного электрометра, чтобы компенсировать неточность этого инструмента. Использование букв, отличных от A, B, C и D (буквы, используемые для формы сигнала капиллярного электрометра), облегчило сравнение, когда неправильные и правильные линии были нарисованы на одном графике[4]. Эйнтховен, вероятно, выбрал начальную букву P, чтобы последовать примеру Декарта в геометрии[4]. Когда более точная форма волны была получена с использованием струнного гальванометра, который соответствовал скорректированной форме волны капиллярного электрометра, он продолжал использовать буквы P, Q, R, S и T[4], и эти буквы все ещё используются сегодня. Эйнтховен также описал электрокардиографические особенности ряда сердечно-сосудистых заболеваний.
  • В 1897 году французский инженер Клемен Адер изобрёл струнный гальванометр [5].
  • В 1901 году Эйнтховен, работавший в Лейдене (Нидерланды), использовал струнный гальванометр: первый практический ЭКГ-аппарат[6]. Это устройство было гораздо более чувствительным, чем капиллярный электрометр, который использовал Уоллер.
  • В 1924 году Эйнтховен был удостоен Нобелевской премии по медицине за новаторскую работу по разработке ЭКГ-аппарата[7][8].
  • К 1927 году General Electric разработала портативное устройство, которое могло бы производить электрокардиограммы без использования струнного гальванометра. Это устройство вместо этого объединяло ламповые усилители, аналогичные тем, которые использовались в радио, с внутренней лампой и движущимся зеркалом, которое направляло электрические импульсы на пленку[9].
  • В 1937 году Таро Такеми изобрел новый портативный электрокардиограф[10].
  • Хотя основные принципы той эпохи все ещё используются сегодня, многие достижения в электрокардиографии были достигнуты после 1937 года. Приборостроение превратилось из громоздкого лабораторного аппарата в компактные электронные системы, которые часто включают компьютерную интерпретацию электрокардиограммы[11].
  • Первая отечественная книга по электрокардиографии вышла под авторством русского физиолога А. Самойлова в 1909 г. (Электрокардиограмма. Йенна, изд-во Фишер).

Применение

  • Определение частоты (см. также пульс) и регулярности сердечных сокращений (например, экстрасистолы (внеочередные сокращения), или выпадения отдельных сокращений — аритмии).
  • Показывает острое или хроническое повреждение миокарда (инфаркт миокарда, ишемия миокарда).
  • Может быть использована для выявления нарушений обмена калия, кальция, магния и других электролитов.
  • Выявление нарушений внутрисердечной проводимости (различные блокады).
  • Метод скрининга при ишемической болезни сердца, в том числе и при нагрузочных пробах.
  • Даёт понятие о физическом состоянии сердца (гипертрофия левого желудочка).
  • Может дать информацию о внесердечных заболеваниях, таких, как тромбоэмболия лёгочной артерии.
  • Позволяет удалённо диагностировать острую сердечную патологию (инфаркт миокарда, ишемия миокарда) с помощью кардиофона.
  • Обязательно применяется при прохождении диспансеризации.

Прибор

Первые электрокардиографы вели запись на фотоплёнке, затем появились чернильные и позже, тепловые самописцы, в большинстве современных приборов используется термопринтер, позволяющий сопровождать запись ЭКГ дополнительной информацией. Скорость движения бумаги составляет обычно 50 мм/с. В некоторых случаях скорость движения бумаги устанавливают на 12,5 мм/с, 25 мм/с или 100 мм/с. В начале каждой записи регистрируется контрольный милливольт. Обычно его амплитуда составляет 10 или, реже, 20 мм/мВ. Медицинские приборы имеют определённые метрологические характеристики, обеспечивающие воспроизводимость и сопоставимость измерений электрической активности сердца[12]. Полностью электронные приборы позволяют сохранять ЭКГ в компьютере.

Электроды

Для измерения разности потенциалов на различные участки тела накладываются электроды. На руки и на ноги ставятся пластмассовые щипчики-зажимы, а на грудную клетку ставятся присоски, в ряде зарубежных стран на грудь ставят липкие электроды. Так как плохой электрический контакт между кожей и электродами создает помехи, то для обеспечения проводимости на участки кожи в местах контакта наносят токопроводящий гель, ранее во времена СССР и в РФ в месте контакта наносили спирт. При нанесении спирта, присоски как правило присасывались намного сильнее. Ранее использовались марлевые салфетки, смоченные солевым раствором.

Фильтры

Применяемые в современных электрокардиографах фильтры сигнала позволяют получать более высокое качество электрокардиограммы, внося при этом некоторые искажения в форму полученного сигнала. Низкочастотные фильтры 0,5—1 Гц позволяют уменьшать эффект плавающей изолинии, внося при этом искажения в форму сегмента ST. Режекторный фильтр 50—60 Гц нивелирует сетевые наводки. Антитреморный фильтр низкой частоты (35 Гц) подавляет артефакты, связанные с активностью мышц.

Нормальная ЭКГ

Схема установки электродов V1—V6.

Отведения Расположение регистрирующего электрода
V1 В 4-м межреберье у правого края грудины
V2 В 4-м межреберье у левого края грудины
V3 На середине расстояния между V2 и V4
V4 В 5-м межреберье по срединно-ключичной линии
V5 На пересечении горизонтального уровня 4-го отведения и передней подмышечной линии
V6 На пересечении горизонтального уровня 4-го отведения и средней подмышечной линии
V7 На пересечении горизонтального уровня 4-го отведения и задней подмышечной линии
V8 На пересечении горизонтального уровня 4-го отведения и срединно-лопаточной линии
V9 На пересечении горизонтального уровня 4-го отведения и паравертебральной линии

В основном регистрируют 6 грудных отведений: с V1 по V6. Отведения V7-V8-V9 незаслуженно редко используются в клинической практике, хотя они дают более полную информацию о патологических процессах в миокарде задней (задне-базальной) стенки левого желудочка.

Для поиска и регистрации патологических феноменов в «немых» участках (см. невидимые зоны) миокарда применяют дополнительные отведения (не входящие в общепринятую систему):

  • Дополнительные задние отведения Вилсона, расположение электродов и соответственно нумерация, по аналогии с грудными отведениями Вилсона, продолжается в левую подмышечную область и заднюю поверхность левой половины грудной клетки. Специфичны для задней стенки левого желудочка.
  • Дополнительные высокие грудные отведения Вилсона, расположение отведений согласно нумерации, по аналогии с грудными отведениями Вилсона, на 1—2 межреберья выше стандартной позиции. Специфичны для базальных отделов передней стенки левого желудочка.
  • Брюшные отведения предложены в 1954 году J. Lamber. Специфичны для переднеперегородочного отдела левого желудочка, нижней и нижнебоковой стенок левого желудочка. В настоящее время практически не используются.
  • Отведения по Небу — Гуревичу. Предложены в 1938 году немецким учёным W. Nebh. Три электрода образуют приблизительно равносторонний треугольник, стороны которого соответствуют трём областям — задней стенке сердца, передней и прилегающей к перегородке. При регистрации электрокардиограммы в системе отведений по Небу при переключении регистратора в позицию aVL можно получить дополнительное отведение aVL-Neb, высокоспецифичное в отношении заднего инфаркта миокарда.

Правильное понимание нормальных и патологических векторов деполяризации и реполяризации клеток миокарда позволяют получить большое количество важной клинической информации. Правый желудочек обладает малой массой, оставляя лишь незначительные изменения на ЭКГ, что приводит к затруднениям в диагностике его патологии, по сравнению с левым желудочком.

Электрическая ось сердца (ЭОС)

Линейка для ЭКГ с номограммами, облегчающими определение ЭОС

Электрическая ось сердца — проекция результирующего вектора возбуждения желудочков во фронтальной плоскости (проекция на ось I стандартного электрокардиографического отведения). Обычно она направлена вниз и вправо (нормальные значения: 30°…70°), но может и выходить за эти пределы у высоких людей, лиц с повышенной массой тела, детей (вертикальная ЭОС с углом 70°…90°, или горизонтальная — с углом 0°…30°). Отклонение от нормы может означать как наличие каких-либо патологий (аритмии, блокады, тромбоэмболия), так и нетипичное расположение сердца (встречается крайне редко). Нормальная электрическая ось называется нормограммой. Отклонения её от нормы влево или вправо — соответственно левограммой или правограммой.

Другие методы

Внутрипищеводная электрокардиография

Активный электрод вводится в просвет пищевода. Метод позволяет детально оценивать электрическую активность предсердий и атриовентрикулярного соединения. Важен при диагностике некоторых видов блокад сердца.

Векторкардиография

Регистрируется изменение электрического вектора работы сердца в виде проекции объемной фигуры на плоскости отведений.

Прекардиальное картирование

На грудную клетку пациента закрепляются электроды (обычно матрица 6х6), сигналы от которых обрабатываются компьютером. Используется в частности, как один из методов определения объёма повреждения миокарда при остром инфаркте миокарда. К текущему моменту расценивается как устаревший.

Пробы с нагрузкой

Велоэргометрия используется для диагностики ИБС.

Холтеровское мониторирование

Система холтеровского мониторирования

Синоним — суточное мониторирование ЭКГ по Холтеру.

На теле пациента, который ведет обычный образ жизни, закрепляется регистрирующий блок, записывающий электрокардиографический сигнал от одного, двух, трёх или более отведений в течение суток или более. Дополнительно регистратор может иметь функции мониторирования артериального давления (СМАД). Одновременная регистрация нескольких параметров является перспективной в диагностике заболеваний сердечно-сосудистой системы.

Стоит упомянуть о семисуточном мониторировании ЭКГ по Холтеру, которое даёт исчерпывающую информацию об электрической деятельности сердца.

Результаты записи передаются в компьютер и обрабатываются врачом при помощи специального программного обеспечения.

Гастрокардиомониторирование

Одновременная запись электрокардиограммы и гастрограммы в течение суток. Технология и прибор для гастрокардиомониторирования аналогичны технологии и прибору для холтеровского мониторирования, только, кроме записи ЭКГ по трём отведениям, дополнительно записываются значения кислотности в пищеводе и (или) желудке, для чего используется рН-зонд, введённый пациенту трансназально. Применяется для дифференциальной диагностики кардио- и гастрозаболеваний.

Электрокардиография высокого разрешения

Метод регистрации ЭКГ и её высокочастотных, низкоамплитудных потенциалов, с амплитудой порядка 1—10 мкВ и с применением многоразрядных АЦП (16—24 бита).

Обследование ЭКГ у пациентов с низким сердечно-сосудистым риском

Американская рабочая группа по профилактике заболеваний (U.S. Preventive Services Task Force, USPSTF) считает, что регистрация ЭКГ у пациентов с низким сердечно-сосудистым риском не несет дополнительной диагностической ценности. Причем это касается и стресс-ЭКГ. Вывод был сделан на основе мета-анализа 17 клинических исследований. Авторы исследования считают, что потенциальная польза, которую может принести исследование, не превосходит возможного вреда, где под вредом понимается проведение дополнительных ненужных процедур, которые могут иметь осложнение и вызывать дополнительное беспокойство пациента[13].

См. также

Эта страница в последний раз была отредактирована 25 апреля 2021 в 20:29.

ЭКГ

Снятие электро кардио граммы (ЭКГ) опытной медсестрой.

Расшифровка ЭКГ врачом-кардиологом высшей категории.

Электрокардиогра?фия — методика регистрации и исследования электрических полей, образующихся при работе сердца. Электрокардиография представляет собой относительно недорогой, но ценный метод электрофизиологической инструментальной диагностики в кардиологии.

Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ) — графического представления разности потенциалов возникающих в результате работы сердца и проводящихся на поверхность тела. На ЭКГ отражается усреднение всех векторов потенциалов действия, возникающих в определённый момент работы сердца.

Применение

  • Определение частоты (см. также пульс) и регулярности сердечных сокращений (например, экстрасистолы (внеочередные сокращения), или выпадения отдельных сокращений — аритмии).
  • Показывает острое или хроническое повреждение миокарда (инфаркт миокарда, ишемия миокарда).
  • Может быть использована для выявления нарушений обмена калия, кальция, магния и других электролитов.
  • Выявление нарушений внутрисердечной проводимости (различные блокады).
  • Метод скрининга при ишемической болезни сердца, в том числе и при нагрузочных пробах.
  • Даёт понятие о физическом состоянии сердца (гипертрофия левого желудочка).
  • Может дать информацию о внесердечных заболеваниях, таких как тромбоэмболия лёгочной артерии.
  • Позволяет удалённо диагностировать острую сердечную патологию (ишемия миокарда) с помощью кардиофона.
  • Может применяться в исследованиях когнитивных процессов, самостоятельно или в сочетании с другими методами

Нормальная ЭКГ

Зубцы на ЭКГ. Соответствие участков ЭКГ с соответствующей фазой работы сердца.

Обычно на ЭКГ можно выделить 5 зубцов: P, Q, R, S, T. Иногда можно увидеть малозаметную волну U. Зубец P отображает процесс охвата возбуждением миокарда предсердий, комплекс QRS — систолу желудочков, сегмент ST и зубец T отражают процессы реполяризации миокарда желудочков. Процесс реполяризации (Repolarization) — фаза, во время которой восстанавливается исходный потенциал покоя мембраны клетки после прохождения через неё потенциала действия. Во время прохождения импульса происходит временное изменение молекулярной структуры мембраны, в результате которого ионы могут свободно проходить через неё. Во время реполяризации ионы диффундируют в обратном направлении для восстановления прежнего электрического заряда мембраны, после чего клетка бывает готова к дальнейшей электрической активности.

Отведения

Каждая из измеряемых разностей потенциалов в электрокардиографии называется отведением. Отведения I, II и III накладываются на конечности: I — правая рука (-) — левая рука (+), II — правая рука (-) — левая нога (+), III — левая рука (-) — левая нога (+). С электрода на правой ноге показания не регистрируются, его потенциал близок к условному нулю, и он используется только для заземления пациента.

Регистрируют также усиленные отведения от конечностей: aVR, aVL, aVF — однополюсные отведения, они измеряются относительно усреднённого потенциала всех трёх электродов (система Вильсона) или относительно усредненного потенциала двух других электродов (система Гольдбергера, дает амплитуду примерно на 50 % большие). Следует заметить, что среди шести сигналов I, II, III, aVR, aVL, aVF только два являются линейно независимыми, то есть зная сигналы только в каких-либо двух отведениях можно, путем сложения/вычитания, найти сигналы в остальных четырех отведениях.

При так называемом однополюсном отведении регистрирующий (или активный) электрод определяет разность потенциалов между точкой электрического поля, к которой он подведён, и условным электрическим нулём (например, по системе Вильсона). Однополюсные грудные отведения обозначаются буквой V.

Схема установки электродов V1—V6.

Отведения Расположение регистрирующего электрода
V1 В 4-м межреберье у правого края грудины
V2 В 4-м межреберье у левого края грудины
V3 На середине расстояния между V2 и V4
V4 В 5-м межреберье по срединно-ключичной линии
V5 На пересечении горизонтального уровня 4-го отведения и передней подмышечной линии
V6 На пересечении горизонтального уровня 4-го отведения и средней подмышечной линии
V7 На пересечении горизонтального уровня 4-го отведения и задней подмышечной линии
V8 На пересечении горизонтального уровня 4-го отведения и срединно-лопаточной линии
V9 На пересечении горизонтального уровня 4-го отведения и паравертебральной линии

В основном регистрируют 6 грудных отведений: с V1 по V6. Отведения V7-V8-V9 незаслуженно редко используются в клинической практике, так как они дают более полную информацию о патологических процессах в миокарде задней (задне-базальной) стенки левого желудочка.

Для поиска и регистрации патологических феноменов в «немых» участках (см. невидимые зоны) миокарда применяют дополнительные отведения (не входящие в общепринятую систему):

  • Дополнительные задние отведения Вилсона, расположение электродов и соответственно нумерация, по аналогии с грудными отведениями Вилсона, продолжается в левую подмышечную область и заднюю поверхность левой половины грудной клетки. Специфичны для задней стенки левого желудочка.
  • Дополнительные высокие грудные отведения Вилсона, расположение отведений согласно нумерации, по аналогии с грудными отведениями Вилсона, на 1-2 межреберья выше стандартной позиции. Специфичны для базальных отделов передней стенки левого желудочка.
  • Брюшные отведения предложены в 1954 году J.Lamber. Специфичны для переднеперегородочного отдела левого желудочка, нижней и нижнебоковой стенок левого желудочка. В настоящее время практически не используются.
  • Отведения по Небу — Гуревичу. Предложены в 1938 году немецким учёным W. Nebh. Три электрода образуют приблизительно равносторонний треугольник, стороны которого соответствуют трём областям — задней стенке сердца, передней и прилегающей к перегородке. При регистрации электрокардиограммы в системе отведений по Небу при переключении регистратора в позицию aVL можно получить дополнительное отведение aVL-Neb, высокоспецифичное в отношении заднего инфаркта миокарда.

Правильное понимание нормальных и патологических векторов деполяризации и реполяризации клеток миокарда позволяют получить большое количество важной клинической информации. Правый желудочек обладает малой массой, оставляя лишь незначительные изменения на ЭКГ, что приводит к затруднениям в диагностике его патологии, по сравнению с левым желудочком.

Электрическая ось сердца (ЭОС)

Электрическая ось сердца — проекция результирующего вектора возбуждения желудочков во фронтальной плоскости (проекция на ось I стандартного электрокардиографического отведения). Обычно она направлена вниз и вправо (нормальные значения: 30°…70°), но может и выходить за эти пределы у высоких людей, лиц с повышенной массой тела, детей (вертикальная ЭОС с углом 70°…90°, или горизонтальная — с углом 0°…30°). Отклонение от нормы может означать как наличие каких-либо патологий (аритмии, блокады, тромбоэмболия), так и нетипичное расположение сердца (встречается крайне редко). Нормальная электрическая ось называется нормограммой. Отклонения её от нормы влево или вправо — соответственно левограммой или правограммой.

  • Вы здесь:  
  • Главная
  • Диагностическая деятельность
  • ЭКГ

В статье обращается внимание на важность диагностики инфаркта миокарда правого желудочка. ЭКГ-диагностика инфаркта миокарда правого желудочка осуществляется при снятии так называемых дополнительных правых грудных отведений V3R-V6R, при этом обнаруживают патологический Q, подъем сегмента ST, отрицательный Т. Мотивацией к снятию дополнительных правых грудных отведений являются как особенности клинической картины заболевания, так и, главным образом, наличие ЭКГ-признаков нижнедиафрагмального или заднебазального инфаркта миокарда.

To question about ECG diagnosis of myocardial infarction of right ventricle.

The article pay attention to the importance of diagnostics of myocardial infarction of the right ventricle. ECG diagnosis of myocardial infarction of the right ventricle is carried out when removing the so-called additional right precordial leads V3R-V6R, in this case show pathological Q, rise segment ST, negative T. The motivation for the withdrawal of additional right precordial leads are both features of clinical disease and, mainly, the presence of ECG-signs inferior phrenic or posterobasal myocardial infarction.

Распознавание инфаркта миокарда правого желудочка в широкой практике носит казуистический характер. В то же время его частота составляет около 3%. Большое количество больных имеет одновременно инфаркт миокарда левого и правого желудочков, при этом особенно часто инфаркт миокарда правого желудочка встречается у больных с поражением нижней стенки левого желудочка (до 30% больных). У 13% больных имеется сочетание инфаркта миокарда правого желудочка и передней стенки левого желудочка. На аутопсии сочетанное поражение обоих желудочков выявляется у 14-84% умерших (Н.А. Мазур, 2009). К сожалению (в плане диагностики), у больных инфарктом миокарда правого желудочка не имеется четких специфических отличий в клинических проявлениях заболевания. Н.А. Мазур (2009) отмечает, что у некоторых больных наблюдается быстрое развитие правожелудочковой недостаточности без застоя крови в малом круге кровообращения. В то же время А.В. Шпектор и Е.Ю. Васильева (2008) обращают внимание на то, что в острой стадии инфаркта правого желудочка правожелудочковая недостаточность проявляется обычно не застоем крови по большому кругу кровообращения, который развивается позже по мере накопления жидкости, а гипотонией. Это связано с тем, что особенностью механики работы правого желудочка является ее высокая зависимость от преднагрузки. И поэтому, если у больного с признаками инфаркта миокарда правого желудочка снижено АД, ему необходима массивная инфузионная терапия. При этом вазопрессоры опасны, т.к., повышая системное давление, они повышают давление и в сосудах малого круга кровообращения, что резко увеличивает нагрузку на пораженный правый желудочек. Объем же необходимой инфузии при гипотонии, связанной с инфарктом миокарда правого желудочка, нередко достигает нескольких литров. Это достаточно безопасно, если имеется изолированное поражение правого желудочка, т.к. при здоровом левом желудочке отек легких не развивается. Однако если имеется сочетанное поражение обоих желудочков, то инфузию необходимо проводить под контролем заклинивающего давления в легочной артерии, чтобы избежать перегрузки малого круга кровообращения. В связи с повышенной чувствительностью правого желудочка к преднагрузке еще одной особенностью лечения инфаркта миокарда правого желудочка является крайняя осторожность в использовании нитратов и диуретиков (т.к. они уменьшают преднагрузку). Необходима осторожность и в применении морфина у таких больных, т.к. морфин обладает умеренным вазодилатирующим действием.

Нужно ли использовать тромболитики при инфаркте миокарда правого желудочка? Специальных исследований по этому вопросу не проводилось, но имеется согласие экспертов о целесообразности их применения, особенно в случае гипотонии; больным инфарктом миокарда правого желудочка также показано проведение ангиопластики. Следует отметить, что возникновение фибрилляции предсердий у больных инфарктом миокарда правого желудочка приводит к быстрому ухудшению состояния, в таких случаях необходима срочная электрическая кардиоверсия.

Как же диагностируют инфаркт миокарда правого желудочка в обычной клинической практике с помощью ЭКГ?

Известно, что правая коронарная артерия является общим источником кровоснабжения как задних отделов левого желудочка, так и правого желудочка. Поэтому до 1/3 задних инфарктов миокарда левого желудочка сочетается с инфарктом миокарда правого желудочка. При крайне правом типе коронарного кровообращения ветви правой коронарной артерии могут распространяться и на боковую стенку левого желудочка, и на верхушку. А.В. Шпектор и Е.Ю. Васильева (2009) отмечают, что у 75% больных инфарктом миокарда выявлены множественные поражения коронарных артерий, что нередко приводит к развитию коллатерального кровообращения. В этой стадии распространенность инфаркта миокарда может не соответствовать классической анатомии коронарного русла. Так, если у больного был субтотальный стеноз передней межжелудочковой артерии и кровоснабжение ее зоны обеспечивалось во многом за счет коллатералей из правой коронарной артерии, то тромбирование правой коронарной артерии может приводить к развитию огромного циркулярного инфаркта миокарда.

Диагностируется инфаркт миокарда правого желудочка на ЭКГ с помощью дополнительных отведений ЭКГ — так называемых правых грудных отведений: V3R-V4R-V5R-V6R. Эти отведения необходимо снимать во всех случаях заднедиафрагмальных и заднебазальных инфарктов миокарда, а также когда локализация инфаркта миокарда по стандартным отведениям ЭКГ неясна (Candell — Riera J. et al., 1981; Wenger N. et al., 1981; Goldberger A., 1984; Wagner G., 1994; Шевченко Н.М., 1994; Дощицин В.Л., 1999; Мазур Н.А., 2009). Регистрация V3R-V6R или хотя бы V4R в первые часы заболевания имеет очень большое значение для распознавания инфаркта миокарда правого желудочка (Н.А. Мазур, 2009).

Для того чтобы снять дополнительные правые грудные отведения, активный электрод накладывают на правую половину грудной клетки «зеркально», симметрично по отношению к традиционным грудным отведениям (рис. 1). При этом электроды V1-2 оставляют без изменения, а электроды V3-6, перенесенные на правую половину грудной клетки, формируют правые грудные отведения.

Рисунок 1. Дополнительные правые грудные отведения

imageа — схема наложения дополнительных правых грудных отведений

б — наложение грудных электродов на пациентке

в — ЭКГ, снятая с левыми грудными и дополнительными правыми грудными отведениями у практически здорового человека

При инфаркте миокарда правого желудочка в правых грудных отведениях обнаруживаются следующие изменения:

1)  высокоспецифично наличие подъема сегмента ST на 0,5-1 мм в этих отведениях (однако подъем сегмента ST у половины больных сохраняется не более 10 часов от начала заболевания);

2)  патологический зубец Q; комплекс QRS при этом имеет форму QR или QS (В.Л. Дощицин, 1999). Н.А. Мазур (2009) отмечает, что патологический Q в правых грудных отведениях имеет низкую специфичность;

3)  отрицательный зубец T;

4)  в случае некроза боковой и передней стенок правого желудочка эти же изменения регистрируются при наложении электродов V3R-V4R-V5R-V6R на два ребра выше (Люсов В.А. и др., 2008).

Кроме того, высокую предсказательную точность (около 80%) имеет депрессия сегмента ST в отведениях V2 и aVF; часто возникают блокада правой ножки пучка Гиса и атриовентрикулярная блокада.

Мы наблюдали больного Ш., 70 лет, в 11-й городской больнице г. Казани с обширным циркулярным инфарктом миокарда, когда на ЭКГ в течение первых суток госпитализации сначала был обнаружен подъем сегмента ST на 3 мм в V1-V4 отведениях, депрессия сегмента ST в I, aVL, далее развилась полная блокада правой ножки пучка Гиса, а затем произошел подъем сегмента ST в III и aVF. ЭКГ-признаки нижнего инфаркта миокарда (подъем сегмента ST в III и aVF) побудили нас к снятию правых грудных отведений ЭКГ. При снятии правых грудных отведений были обнаружены патологический Q, подъем сегмента ST и отрицательный Т в V3R-V6R, что указывает на развитие инфаркта миокарда также и правого желудочка.

Приводим ЭКГ больного Ш., 70 лет (рис. 2).

Рисунок 2. ЭКГ больного Ш., 70 лет.

imageОбширный циркулярный инфаркт миокарда с зубцом Q: инфаркт миокарда с зубцом Q переднеперегородочной области левого желудочка с распространением на верхушку и боковую стенку левого желудочка, инфаркт миокарда с зубцом Q нижней стенки левого желудочка и правого желудочка; полная блокада правой ножки пучка Гиса

При последующем проведении селективной коронарной ангиографии (в МКДЦ) был обнаружен правовенечный тип коронарного кровообращения. Детали ангиографического исследования таковы: левая коронарная артерия — ствол без особенностей, ПМЖВ — окклюзия в среднем сегменте, дистальный отдел ПМЖВ не контрастируется, субокклюзия 1ДВ в проксимальном отделе, ОВ — стеноз высоко отходящей 1ВТК в проксимальном отделе до 50%, стеноз ЗВТК в среднем отделе до 75%. Правая коронарная артерия — стеноз в среднем сегменте до 50%, стеноз устья ПЖА до 90%, ЗБВ — стенозы в среднем отделе до 90% и 80%. ЗМЖВ — окклюзия в проксимальном отделе, дистальные отделы контрастируются по внутрисистемным анастомозам.

Итак, настоящим сообщением мы хотим привлечь внимание к вопросу ЭКГ-диагностики инфаркта миокарда правого желудочка. В обычной клинической практике при ЭКГ-признаках инфаркта миокарда задней локализации надо обязательно снимать ЭКГ в дополнительных правых грудных отведениях V3R-V6R, что позволяет диагностировать инфаркт миокарда правого желудочка при обнаружении в этих отведениях патологического зубца Q, подъема сегмента ST и отрицательного зубца Т. Диагностирование инфаркта миокарда правого желудочка вносит существенную коррекцию в тактику ведения больного инфарктом миокарда.

В.Н. Ослопов, О.В. Богоявленская, Ю.В. Ослопова, М.А. Макаров, Р.Т. Хабибуллина, М.Г. Трегубова

Казанский государственный медицинский университет

Городская клиническая больница № 11 УЗ г. Казани

Богоявленская Ольга Владимировна — кандидат медицинских наук, доцент кафедры пропедевтики внутренних болезней

Литература:

1.  Мазур Н.А. Практическая кардиология. — М.: Медпрактика-М, 2009. — 616 с.

2.  Шпектор А.В., Васильева Е.Ю. Кардиология: клинические лекции. — М.: АСТ: Астрель, 2008. — 765 с.

3.  Candell-Riera J., Figueras J., Valie V. et al. Right ventricular infarction. Relationships between ST segment elevation in V4R and hemodynamic, scintigraphic and echocardiographic findings in patients with acute inferior myocardial infarction. — Am. Heart J., 1981. — V. 101. — P. 281.

4.  Wenger N.K., Mock M.B., Ringqvist I. Ambulatory electrocardiographic reсording. — Chicago: Year Book Med. Publ., 1981. — 456 p.

5.  Goldberger A.L. Myocardial infarction. Electrocardiographic differential diagnosis: 3-rd ed. — St. Louis: Mosby, 1984. — 336 p.

6.  Wagner G.S. Marriot’s practical electrocardiography. 9-th ed. — Baltimore: Williams & Wilkins, 1994. — 434 p.

7.  Шевченко Н.М. Основы клинической электрокардиографии. Квалификационные тесты по интерпретации ЭКГ. — М.: Оверлей, 1994. — 156 с.

8.  Дощицин В.Л. Клиническая электрокардиография. — М.: Медицинское информационное агентство, 1999. — 373 с.

9.  Люсов В.А., Волков Н.А., Гордеев И.Г. Инфаркт миокарда. В кн.: Руководство по кардиологии: Учебное пособие в 3 т. / под ред. Г.И. Сторожакова, А.А. Горбаченкова. — М.: ГЭОТАР-Медиа, 2008. — Т. 1 — С. 514-515.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий