Читать онлайн «Азбука ЭКГ» автора Зудбинов Юрий Иванович — RuLit — Страница 1

Автор: Владимир Хлебников Редакция: Михаил Гусев Оформление: Никита Родионов Публикация: 12.11.2018

image

Наверняка много раз в жизни вы встречались с ситуацией, когда вам нужно расшифровать «пленочку»: на экзамене по пропедевтике внутренних болезней, при изучении истории болезни (причем далеко не обязательно на отделении терапии или кардиологии) или даже консультируя подругу вашей мамы, обратившуюся к вам со словами «ты же врач». Если во всех этих ситуациях вы думали: «Вроде бы электрокардиографию на 2–3 курсах медицинского ВУЗа учил, но когда беру электрокардиограмму в руки, мало что понимаю. Нужно что-то с этим делать», то эта статья — точно для вас. Если вы уже неплохо разбираетесь в электрокардиографии, то в любом случае указанные в этой статье ссылки на различные источники могут оказаться для вас полезными.

С чего начать изучение ЭКГ?

Физиология

Для понимания ЭКГ в первую очередь необходимы базовые знания по физиологии. Если вы — студент 1–2 курса медицинского ВУЗа (или просто хотите повторить физиологию) — лучше и понятнее всего физиология ЭКГ описана в книгах «Основы медицинской физиологии» Н. Н. Алипова и «Медицинская физиология» Артура Гайтона и Джона Холла. Если вы — студент 3 и более старших курсов и уже знакомы с основами физиологии ЭКГ, то, скорее всего, не имеет большого смысла возвращаться к углубленному изучению физиологии и для вас будет достаточно конспективного повторения электрофизиологии в начальных главах книг по ЭКГ, которые будут приведены ниже.

Анализ и интерпретация ЭКГ

Схема анализа ЭКГ

С каких книг начать изучение ЭКГ?

Третья — «ЭКГ в практике врача». Здесь уже более углубленно рассматриваются отдельные вопросы клинической интерпретации ЭКГ. Также стоит отметить, что все книги связаны между собой по тексту и одна часть ссылается на другую, что бывает достаточно полезно.

Другим хорошим вариантом для начала изучения ЭКГ является всем известная книга В. В. Мурашко, А. В. Струтынского «ЭКГ», остающаяся для многих студентов медицинских ВУЗов библией. И тем не менее, мы ставим эту книгу на второе место для начинающих, так как некоторые отечественные подходы, описанные в ней, уже устарели. Но, конечно, и на сегодняшний день данное пособие остается одним из лучших вариантов для начинающих изучать ЭКГ.

Для каждого нужен свой подход, и поэтому вы, конечно, можете выбрать и другие книги как для начала, так и дальнейшего изучения ЭКГ. Целью этой статьи не служит описание абсолютно всех книг и источников по ЭКГ, мы предлагаем, по нашему мнению, наиболее оптимальные варианты для начинающих. Ссылки на статьи с обсуждением множества других книг по ЭКГ будут предоставлены ниже.

Дальнейшее изучение ЭКГ

После того, как вы усвоили основы ЭКГ и научились уверенно смотреть на электрокардиограмму, зная, что вы на ней должны проанализировать и как интерпретировать основные найденные вами изменения, вам необходимы 2 вещи — в первую очередь практика, а также углубленное изучение отдельных тем по ЭКГ.

Практика по ЭКГ

Через какое-то время просмотра ЭКГ-шек вы почувствуете что-то вроде «точки невозврата», когда вы сможете смотреть на ЭКГ комплексно, уверенно исключая или подтверждая основные патологии. Однако все равно будут встречаться сложные, спорные случаи, которые будут заставлять вас читать более углубленные книги и статьи по ЭКГ и спрашивать советы у коллег.

Где находить ЭКГ для регулярной практики?

Подписывайтесь на паблики ВКонтакте:

  1. MEDIC: ЭКГ. В этой группе каждый день утром выкладывается ЭКГ с вариантами ответов в виде теста, а вечером дается ответ с анализом основных изменений на ЭКГ. Также здесь можно найти различные источники и статьи по ЭКГ. Ссылка: https://vk.com/medic_ecg
  2. Тесты по ЭКГ. Еще один отличный паблик с тестами по ЭКГ каждый день. Его админ также перевел множество различных книг по ЭКГ с английского языка, создал несколько программ-справочников по ЭКГ для компьютера и телефона, все это можно найти в группе. Ссылка: https://vk.com/club122935445

Сайты:

1. https://lifeinthefastlane.com/ecg-library/ — на этом сайте можно найти множество различных примеров ЭКГ. Также это один из лучших сайтов, который можно использовать как справочник, когда вам что-то непонятно, и даже в какой-то степени как учебное пособие.

2. «Википедия» по ЭКГ: https://en.ecgpedia.org/index.php?title=Main_Page

3. http://www.ecg-quiz.com/

4. https://www.skillstat.com/tools/ecg-simulator — онлайн-симулятор ЭКГ (см.картинку) Попробуйте свои силы в определении ритма на мониторе на скорость! Также можете скачать симулятор ЭКГ себе на компьютер: https://cloud.mail.ru/public/6aLN/9xaABKDea

Еще больше полезных пабликов и сайтов по ЭКГ можно найти в этой статье на «MEDIC: ЭКГ» — https://vk.com/@medic_ecg-ssylki-na-resursy-po-ekg

Атласы, приложения и видео по ЭКГ

Атласы

1. Клиническая электрокардиография — Франклин Циммерман. 200 электрокардиограмм с прекрасным разбором и объяснениями.

2. Podrids Real-World ECGs. Один из наиболее известных атласов по интерпретации ЭКГ (6 томов).

Книги для более углубленного изучения ЭКГ:

1. Практическая электрокардиография Марриотта — одно из наиболее полных руководств по ЭКГ;

2. Руководство по электрокардиографии — Орлов В. Н.

Еще больше литературы (книги, атласы по ЭКГ) вы найдете в статье на паблике «MEDIC: ЭКГ» https://vk.com/@medic_ecg-literatura-po-ekg

Видео по ЭКГ

Существуют хорошие видеокурсы, которые могут помочь с пониманием основ ЭКГ: — Курс по ЭКГ от Strong Medicine: https://vk.com/videos-150727887?section=album_3 — «ЭКГ под силу каждому»: https://vk.com/videos-150727887?section=album_1 — «ЭКГ — это интересно!» от internist.ru: https://vk.com/videos-150727887?section=album_2

Также есть различные приложения по ЭКГ на смартфон (справочники, атласы, тесты, либо все вместе в одной программе):

— Из русскоязычных программ, по нашему мнению, лучшими (и это не реклама) являются программы от паблика «Тесты по ЭКГ». Правда, они платные (ссылка на паблик — см. выше); — ЭКГ: Расшифровка и Тесты (Ecg). В приложении есть маленький справочник, может для кого-то покажется полезным. Бесплатно. — ECG 100 Clinical Cases. Бесплатное приложение; — ECG Master. Хорошее приложение с ЭКГ-шками, отвечаете на них как тест. Из минусов — если хотите открыть объяснения к ЭКГ, то нужно заплатить 140 рублей. Другие приложения по ЭКГ на смартфоны в статье на паблике «MEDIC: ЭКГ» https://vk.com/@medic_ecg-obzor-prilozhenii-po-ekg-na-smartfon

Презентации по ЭКГ

Много различных полезных презентаций по ЭКГ по ссылке: https://vk.com/topic-150727887_41585478

Лайфхаки

Находите для себя и используйте различные «лайфхаки» при анализе ЭКГ. Что мы имеем в виду?

Приведем пример. Важной частью анализа ЭКГ является оценка ЧСС. В книгах обычно дается формула ЧСС = 60/RR (сек), но для вычисления по ней нужно относительно много времени, и в случаях, когда необходима быстрая оценка ЧСС (например, у постели больного, на утренней конференции и т. д.), это является достаточно важным фактором. Для того чтобы быстро понять, какая ЧСС у пациента, можно использовать так называемую «формулу ленивого кардиолога»:

Подобные лайфхаки можно находить в различных презентациях, статьях, книгах и на сайтах, поэтому, читая различные источники, вы можете найти что-то новое, интересное и полезное.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.Все лекции для врачей удобным спискомПоделиться:30 мая 2021

1-й урок бесплатного курса для врачей «ЭКГ под силу каждому» — вводное занятие по ЭКГ. Рассмотрены вопросы по проводящей системе сердца и правильному наложению электродов — очень важные вопросы, без полного понимания которых нет смысла дальше изучать ЭКГ. Лекцию для врачей проводят авторы книги «ЭКГ под силу каждому» врачи-кардиологи Анатолий Щучко, Андрей Щучко, 

Кардиограмма — зубцы, интервалы, сегменты Лекция для врачей №2. (врачи-кардиологи Анатолий Щучко, Андрей Щучко)

Скорости записи ЭКГ, определения частоты сердечных сокращений, понятия электрической оси сердца, треугольника Эйнтховена. Лекция для врачей №3 (врачи-кардиологи Анатолий Щучко, Андрей Щучко)

Нарушения ритма. ЭКГ под силу каждому. Синусовые аритмии и экстрасистолии. Лекция для врачей №4 (врачи-кардиологи Анатолий Щучко, Андрей Щучко)

ЭКГ. Суправентрикулярные и желудочковую тахикардии, трепетания и фибрилляции предсердий и желудочков. Лекция для врачей №5 (врачи-кардиологи Анатолий Щучко, Андрей Щучко)

ЭКГ. Нарушение проводимости — блокады. Механизм формирования изменений на кардиограмме. Лекция для врачей №6 (врачи-кардиологи Анатолий Щучко, Андрей Щучко)

Блокады ножек пучка Гиса, их ЭКГ-критерии, механизмы формирования изменений на кардиограмме. Лекция для врачей №7 (врачи-кардиологи Анатолий Щучко, Андрей Щучко)

ЭКГ при гипертрофиях различных отделов сердца. Лекция для врачей №8 (врачи-кардиологи Анатолий Щучко, Андрей Щучко)

Понятие инфаркт. Ишемия, повреждение и некроз миокарда и как их рассмотреть на ЭКГ. Лекция для врачей № 9 (врачи-кардиологи Анатолий Щучко, Андрей Щучко)

ЭКГ при различных локализациях инфаркта миокарда. Лекция для врачей №10 (врачи-кардиологи Анатолий Щучко, Андрей Щучко)

Дополнительный материал

Проводящая система сердца

Проводящая система сердца — комплекс сложных высокоспециализированных нейромышечных образований, способных к самостоятельной генерации электрических импульсов и осуществляющих координацию деятельности миокарда. Знание особенностей морфологии и физиологии проводящей системы — это ключ к глубокому пониманию всех связанных с ней патологических процессов и разработке наиболее эффективных методов противодействия последним.

Эмбриогенез проводящей системы сердца

Рис. 9. Концепция колец, сердечная трубка (слева). Концепция рекрутирования, клетки миокарда преобразуются в проводящие кардиомиоциты рядом с каркасом проводящей системы (справа). ВС — венозный синус, П — предсердия, Ж — желудочки, ПЖК — пред­сердно-желудочковое кольцо, СПК — синусно-предсердное кольцо

Синусно-предсердный узел (лат. nodus sinuatrialis, узел Кисса-Флека, СПУ) является первым звеном проводящей системы сердца. СПУ имеет веретенообразную форму, длину 8-26 мм, ширину 4-13 мм, толщину 1-3 мм и располагается под эпикардом правого предсердия между устьем верхней полой вены и правым ушком в верхней части разделяющей эти образования пограничной борозды. В 10% случаев СПУ подковообразно охватывает кавопредсердное соединение и гребень правого ушка. Кровоснабжение узла происходит посредством одноименной артерии. Существует несколько морфологических вариантов артерии СПУ. Преимущественно она берет начало от правой коронарной артерии в проксимальном ее отделе до отхождения правой краевой ветви (ветви острого края). В дальнейшем артерия СПУ обходит устье верхней полой вены с левой или правой стороны либо образует вокруг него кольцевидный анастомоз. Иногда артерия ответвляется после отхождения правой краевой ветви и следует по заднебоковой поверхности правого предсердия непосредственно в сторону узла. В меньшем количестве случаев артерия СПУ отходит в проксимальном или дистальном участке огибающей ветви левой коронарной артерии, следуя между предсердиями или обходя крышу левого предсердия соответственно.

Межузловые пути

Межузловые пути (тракты) проводящей системы сердца всегда являлись объектом дискуссии среди ученых. Классически существовало представление о трех трактах — переднем (Бахмана), среднем (Венкебаха) и заднем (Тореля). Передний тракт в верхней части межпредсердной перегородки делится на ветви, следующие к предсердно-желудочковому узлу и к левому предсердию. Результаты многих современных исследований опровергают наличие специализированных проводящих путей в правом предсердии. Не обнаружено однозначных данных о каких-либо морфологических и гистохимических отличиях клеток миокарда правого предсердия, за исключением непосредственно клеток синусно-предсердного и предсердно-желудочковых узлов. Возможно, часть рабочих кардиомиоцитов имеет особые электрофизиологические свойства, что позволяет им передавать импульс между узлами проводящей системы. 

Предсердно-желудочковый узел

Для понимания расположения предсердно-желудочкового узла (лат. nodus atrioventricularis, узел Ашоффа—Тавара, ПЖУ) следует рассмотреть важное с хирургической точки зрения образование в правом предсердии — треугольник Коха.

Основанием треугольника Коха служит устье коронарного синуса, сторонами — основание септальной створки трехстворчатого клапана и сухожилие Тодаро. Сухожилие Тодаро — соединившиеся волокна клапанов нижней полой вены (евстахиев клапан) и коронарного синуса (тебезиев клапан), следующие к мембранозной перегородке. Иногда вместо сухожилия Тодаро за одну из стенок треугольника Коха принимается нижний край овальной ямки правого предсердия.

ПЖУ в хирургии проецируют на нижнюю часть ближе к вершине треугольника Коха и к основанию септальной створки трехстворчатого клапана. Точное же морфологическое расположение ПЖУ — задний верхний отросток левого желудочка, задняя и нижняя часть нижней стенки левого желудочка, направляющаяся к плоскости трехстворчатого клапана. Длина ПЖУ 3—15 мм, ширина 1—7 мм, толщина 0,5—2 мм. Кровоснабжается узел артерией ПЖУ, исходящей из правой коронарной артерии или, реже, из огибающей ветви левой коронарной артерии. 

Предсердно-желудочковый пучок

ПЖУ продолжается в предсердно-желудочковый пучок (лат. fasciculus atrioventricu laris, пучок Гиса, ПЖП). ПЖП следует к нижнему краю мембранозной части межжелудочковой перегородки, прободая последнюю, идет вдоль границы мембранозной и мышечной частей и делится на две ветви на уровне некоронарного синуса аорты. Соответственно выделяют пенетрирующую и ветвящуюся части ПЖП.

Ветви предсердно-желудочкового пучка

Ветвящаяся часть ПЖП делится на две основные ветви — правую и левую (лат. crus dextrum, crus sinistrum, правая ножка пучка Гиса, левая ножка пучка Гиса. Левая основная ветвь вступает в миокард левого желудочка в мышечной части межжелудочковой перегородки и практически сразу разделяется на переднюю и заднюю ветви. Эти ветви идут в направлении передней и задней сосочковых мышц и заканчиваются в миокарде волокнами Пуркинье. В структуре правой основной ветви выделяют три сегмента, располагающиеся вдоль трабекул (мышечных пучков) правого желудочка. Первый сегмент входит в миокард правого желудочка и направляется к основанию верхней сосочковой мышцы, второй следует вдоль септального пучка, третий — вдоль модераторного пучка к передней сосочковой мышце, где заканчивается волокнами Пуркинье. 

Физиология проводящей системы сердца

Основными клетками миокарда являются кардиомиоциты. Существует три вида кардиомиоцитов — сократительные, проводящие и секреторные.

Сократительные (рабочие) кардиомиоциты образуют основную часть миокарда и способствуют сердечным сокращениям. Проводящие кардиомиоциты — основные клетки проводящей системы сердца. Генерируют и проводят импульс к сократительным кардиомиоцитам. Пейсмейкерные (пейсмейкеры, синусные, P-клетки), переходные, проводящие (T-клетки) и клетки Пуркинье — разновидности проводящих кардиомиоцитов. Секреторные (эндокринные) кардиомиоциты располагаются преимущественно в миокарде ушек предсердий и секретируют предсердный натрийуретический пептид, регулирующий обмен натрия в организме. В аритмологии важно иметь представление о функционировании проводящих и сократительных кардиомиоцитов и их взаимодействии с физиологической точки зрения.

Физиология проводящих кардиомиоцитов

Пейсмейкерные клетки могут быть обнаружены в СПУ, ПЖУ, ПЖП и волокнах Пуркинье. Для реализации своей функции им необходимы три иона — калия (K+), натрия (Na+) и кальция (Ca2+). Мембрана пейсмейкерного кардиомиоцита проницаема преимущественно для K+, который по градиенту концентрации стремится выйти из клетки. Оставшиеся в клетке отрицательно заряженные молекулы белков обусловливают общий отрицательный заряд, в связи с чем минимальные значения мембранного потенциала находятся в пределах —60 —70 Мв.

Ионные каналы Na+ пейсмейкеров всегда находятся в открытом состоянии. По градиенту концентрации Na+ проникает внутрь клетки, повышая значение мембранного потенциала. Этот процесс называется медленной диастолической деполяризацией.

Как только мембранный потенциал достигает значений —40 —50 Мв, открываются потенциал-зависимые ионные каналы Ca2+. Поступление Ca2+ в кардиомиоциты с большей скоростью повышает мембранный потенциал, реализуется потенциал действия пейсмейкера.

На уровне +10 мВ потенциал-зависимые каналы Ca2+ закрываются и открываются потенциал-зависимые каналы K+. K+ по градиенту концентрации стремится из клетки наружу, снижая мембранный потенциал до исходных —60 —70 Мв. Потенциал-зависимые каналы К+ закрываются, завершая процесс реполяризации клетки.

Цикл «медленная диастолическая деполяризация — потенциал действия — реполяризация» замыкается; понятия «потенциал покоя» для пейсмейкеров не существует.

Ca2+ выводится из клетки двумя насосами: один из них использует энергию аденозинтрифосфата, второй — обменивает три иона Na+ на Ca2+.

Физиология сократительных кардиомиоцитов

Сократительные кардиомиоциты не способны к автоматизму, но активно возбуждаются проводящими кардиомиоцитами. Их работа также связана с ионами K+, Na+ и Ca2+.

Невозбужденные сократительные кардиомиоциты обладают потенциалом покоя. Большая проницаемость для ионов К+ по сравнению с остальными ионами обеспечивает отрицательный мембранный потенциал -80 -90 Мв.

Передача стимула на кардиомиоцит происходит путем перехода Na+ и Ca2+ от возбужденной клетки к невозбужденной через щелевидные соединения. Это повышает мембранный потенциал до —70 мВ, что приводит к открытию множества потенциал-зависимых каналов для Na+, наступает фаза быстрой деполяризации.

При значении мембранного потенциала +20 +30 мВ потенциал-зависимые Na-каналы закрываются и открываются потенциал-зависимые К+-каналы. Это фаза быстрой начальной реполяризации.

Постепенное открытие Ca2+-каналов клеточной мембраны и саркоплазматического ретикулума тормозит реполяризацию. K+ и Ca2+ «конкурируют» в своих попытках изменить мембранный потенциал, в связи с чем последний находится на изолинии и обусловливает фазу медленной реполяризации.

Со временем Ca2+-каналы закрываются, ток К+ из клетки начинает преобладать, а мембранный потенциал стремится к исходным значениям. Фаза быстрой конечной реполяризации переходит в потенциал покоя.

Взаимодействие кардиомиоцитов

Проводящие кардиомиоциты генерируют электрический импульс, но практически не способны к сокращению. Сократительные кардиомициты обладают противоположными свойствами. Для эффективной работы сердца у здорового человека происходит активное взаимодействие этих видов кардиомиоцитов.

Взаимодействие кардиомиоцитов возможно благодаря наличию между ними щелевидных соединений, за счет которых миокард формирует целостный функциональный синцитий. Когда пейсмейкерная клетка автоматически возбуждается, через щелевидные соединения ионы Ca2+ перемещаются в соседние проводящие кардиомиоциты, ускоряя их возбуждение. Переходя от клетки к клетке, импульс доходит до сократительного кардиомиоцита.

Сократительные кардиомиоциты выполняют две функции: во-первых, непосредственно сокращаются, во-вторых, передают волну возбуждения на соседние клетки рабочего миокарда. В данном случае, кроме ионов Ca2+, через щелевидные соединения проходят и ионы Na+. Проводящие кардиомиоциты возбуждаются и проводят электрический импульс значительно быстрее сократительных.

В здоровом сердце генерация импульса происходит в СПУ. Так как пейсмейкерные клетки встречаются не только в СПУ, другие элементы проводящей системы тоже способны к автоматизму. Если СПУ активен, пришедшая волна возбуждения подавляет автоматизм остальных отделов. Конкуренции за ритм не происходит из-за меньшей проницаемости для ионов Na+ и соответственно более продолжительной фазы медленной диастолической деполяризации ПЖУ, ПЖП и волокон Пуркинье.

Существует понятие физиологической задержки импульса в ПЖУ, объясняющееся особенностями его строения. Гистологически узел делится на три слоя. Проксимальный слой — преддверие ПЖУ — состоит из переходных клеток, отделенных друг от друга прослойками коллагена. Второй слой — собственно ПЖУ (компактный ПЖУ) — содержит как переходные, так и пейсмейкерные клетки. Третий слой—дистальная часть ПЖУ, непосредственно переходящая в ПЖП. Коллагеновые волокна и трехслойное строение ПЖУ обусловливают замедление проведения и возбуждения составляющих его кардиомиоцитов. Кроме этого, в ПЖУ выделяют быстрые и медленные каналы проведения, что значимо при рассмотрении патогенеза и тактики интервенционного лечения ряда тахиаритмий.

Патологические изменения в анатомии и физиологии проводящей системы сердца приводят к возникновению различных нарушений ритма и проводимости, а также их комбинаций. Некоторые из них корректируются консервативными методами, остальные — только оперативным вмешательством. Чтобы ориентироваться в проблеме электрокардиостимуляции, следует иметь представление о ее видах, показаниях и методике проведения имплантации ЭКС, а также потенциальных осложнениях этой процедуры.

Контрольные вопросы 1. Какие концепции развития проводящей системы сердца вы знаете? 2. Каково расположение СПУ? 3. Что такое треугольник Коха? 4. Сколько ветвей у ПЖП? 5. Какие виды кардиомиоцитов вы знаете? 6. Существует ли понятие потенциала покоя для проводящего кардиомиоцита? 7. Как взаимодействуют кардиомиоциты? 8. В чем различие распространения волны возбуждения между проводящими и сократительными кардиомиоцитами?

Книги для лекции «Вопросы по проводящей системе сердца и правильному наложению электродов. Бесплатный курс лекций по ЭКГ».

ЭКГ под силу каждому книга — А. Щучко

Посмотреть книгу «ЭКГ под силу каждому»  и купить >>

Интернет-магазин медицинской литературы

Бесплатные лекции для врачей. Удобным списком

  • Главная
  • Образование
  • Библиотека детского кардиолога
Аритмии у детей. Атлас электрокардиограмм. Под ред. проф. Школьниковой М.А. — М., 2006. — 148 с. Скачать pdf, 38.04 МБ Диагностика и лечение хронической сердечной недостаточности у детей и подростков Методические рекомендации, АДКР, М., 2010 Скачать pdf, 661.2 КБ Клиника, диагностика и лечение синдрома Кавасаки Клинические рекомендации, АДКР, М., 2011 Скачать pdf, 2.15 МБ Метаболизм магния и терапевтическое значение его препаратов. Пособие для врачей. М., 2002. — 32 с. Скачать pdf, 3.41 МБ Неонатальный скрининг с целью раннего выявления критических врожденных пороков сердца Скачать pdf, 1.25 МБ Синдром внезапной смерти детей грудного возраста М.А.Школьникова, Л.А.Кравцова.  М., 2004 Скачать pdf, 4.34 МБ Синдром удлиненного интервала QT под ред. проф. М.А.Школьниковой. М., 2001 Скачать pdf, 17.25 МБ Синдром удлиненного интервала QT. Современные технологии догенетической диагностики Скачать zip, 30.55 МБ

Учебные программы Статьи

Расшифровка результатов ЭКГ у ребенка: нормы показателей и причины нарушений

Электрокардиография (ЭКГ) – это быстрый и качественный способ получить информацию о работе сердца. Нередко подобное обследование назначают детям для выявления того или иного сердечного заболевания. Оно имеет некоторые отличия от ЭКГ взрослого человека. Родители малышей должны знать, что представляет собой эта процедура, как правильно подготовить к ней ребенка и каким образом расшифровываются результаты кардиограммы.

В каких случаях ребенку назначается ЭКГ?

Педиатр назначает ЭКГ малышам в определенных случаях. К ним относятся:

  • шумы в сердце;
  • головокружения;
  • приступы головной боли и обмороки;
  • быстрая утомляемость;
  • болезненные ощущения в области груди;
  • отеки конечностей;
  • частые инфекционные заболевания;
  • подготовка к операции;
  • наследственная предрасположенность к сердечно-сосудистым патологиям;
  • высокое давление;
  • нарушения эндокринной системы;
  • замедленное физическое развитие.

Также ЭКГ детям делают перед выпиской из роддома для исключения порока сердца и при плановой диспансеризации перед поступлением в детский сад или школу. Исследование сердца показано и перед началом занятий спортом.

Особенности детского организма, которые стоит учитывать при ЭКГ

Работа сердца у маленьких детей имеет свои особенности. По сравнению с сердцебиением взрослых людей, у малышей оно гораздо чаще. Для наглядности ниже приведена таблица нормальных показателей ритма сердца в зависимости от возраста человека:

Возраст

Норма для сердечного ритма, ударов в минуту

Среднее значение пульса, ударов в минуту

0-1 месяца

110-170

140

1-12 месяцев

102-162

132

1-2 года

94-154

124

2-4 года

90-140

115

4-6 лет

86-126

106

6-8 лет

78-118

98

8-10 лет

68-108

88

10-12 лет

60-100

80

12-15 лет

55-95

75

15-50 лет

60-80

70

50-60 лет

64-84

74

60-80 лет

69-89

79

ЭКГ на первом году жизни не позволяет врачам пропустить врожденный порок или иное заболевание сердца

При ЭКГ показатели новорожденного, грудного младенца и подростка зачастую отличаются от нормальных значений. Врач при постановке диагноза учитывает отклонения, допустимые для каждой возрастной группы. Также проведении процедуры принимаются во внимание некоторые особенности детского организма:

  • у грудничков нередко преобладает правый желудочек, что не является патологией, с возрастом это несоответствие проходит;
  • чем младше ребенок, тем короче интервалы кардиограммы;
  • размеры предсердия у малышей больше, чем у взрослых;
  • зубец Т на графике электросигналов от сердечной мышцы имеет отрицательное значение;
  • источники ритмов мигрируют в пределах предсердий;
  • альтернации зубцов на желудочковом комплексе;
  • вероятность неполной блокады на правой ножке пучка Гиса;
  • дыхательная и синусовая аритмия;
  • возможное возникновение глубокого зубца Q в 3 стандартном отведении.

Нормы и расшифровка показателей ЭКГ для детей разного возраста

Диагноз ставится с учетом таких показателей, как зубцы, сегменты и интервалы. Берется во внимание их наличие либо отсутствие, высота, расположение, длительность, последовательность и направление.

Нарушения работы сердца выявляются путем анализа следующих данных:

  1. Синусовый ритм. Это ритмичность сокращений сердечной мышцы под воздействием синусового узла. Этот показатель позволяет оценить характер сокращений желудочков и предсердий.
  2. Частота сердечных сокращений у детей разного возраста.
  3. Источник возбуждения. Он определяется при исследовании зубца Р.
  4. Сердечная проводимость.
  5. Электрическая ось. В 1 и 3 отведениях анализируются зубцы Q, R и S, что позволяет оценить работу пучка Гиса.

Расшифровкой результатов электрокардиограммы должен заниматься только опытный специалист

Расшифровка результатов ЭКГ проводится грамотным кардиологом, знающим специфику функционирования сердца каждой из возрастных групп. На кардиограмме процессы, происходящие в сердечной мышце, обозначаются заглавными буквами латинского алфавита – P, Q, R, S, T. Каждое обозначение на схеме указывает на определенные процессы:

  • желудочковое расслабление – Т;
  • сокращения и расслабления предсердий – Р;
  • возбуждение перегородки между желудочками – Q, S;
  • желудочковое возбуждение – R;
  • продолжительность прохождения электрического импульса от предсердий к желудочкам – PQ;
  • расслабление сердечной мышцы в интервале между сокращениями – TP;
  • пик возбуждения желудочка – ST;
  • длительность его сокращения – QRST.

Психоэмоциональное состояние ребенка может отрицательно повлиять на точность показаний ЭКГ

На результаты ЭКГ могут повлиять такие факторы, как время суток, психоэмоциональное состояние маленького пациента, прием пищи, неправильное наложение либо смещение электродов, помехи от работающих посторонних приборов. Для ребенка нормальными являются следующие показатели:

  • для QRS – 0,06–0,1 с;
  • для P – ≤ 0,1 с;
  • для PQ – 0,2 с;
  • для QT – ≤ 0,4 с.

Результаты ЭКГ нередко говорят о плохой кардиограмме с отклонениями от норм. При этом, если есть необходимость, ребенку назначается дополнительное обследование, а затем выбирается оптимальный метод лечения.

Электрокардиография у детей нередко выявляет нарушения сердечного ритма. Причины нарушений подразделяют на кардиальные и экстракардиальные. К первому виду провоцирующих аритмию факторов относят:

  • врожденные пороки;
  • аутоиммунные и другие патологии сердечного отдела;
  • опухоли и травмы сердца;
  • тяжелые инфекционные заболевания;
  • аномалия развития органа;
  • проведение зондирования и контрастного рентгенологического исследования кровеносных сосудов.

ЭКГ позволяет вовремя выявить нарушения нарушения сердечного ритма

Экстракардиальные причины возникновения аритмии – это патологии нервной и эндокринной систем, болезни крови, рождение раньше срока. Интенсивные физические нагрузки также делают ритм сердца нерегулярным. Наряду с этим высокая температура воздуха, эмоциональное перенапряжение и одновременное течение сердечных болезней и сбоя нейрогуморальной регуляции сердца способны спровоцировать аритмию.

Электрокардиография нередко фиксирует и тахикардию (рекомендуем прочитать: как проявляется синусовая тахикардия у детей на ЭКГ?). Кардиальные причины возникновения заболевания схожи с факторами, провоцирующими развитие аритмии. К экстракардиальным источникам болезни относятся:

  • ацидоз;
  • пониженный уровень сахара в крови и нарушение ее электролитного состава (рекомендуем прочитать: какая норма сахара в крови у ребенка в 12 лет?);
  • заболевания эндокринной системы;
  • тонзиллиты и состояния, возникающие после перенесенной ангины;
  • нейротоксикоз;
  • интоксикационный синдром с повышенной температурой;
  • побочные действия ряда медикаментозных препаратов.

В соответствии с результатами ЭКГ детский кардиолог назначает необходимое лечение

ЭКГ способно выявить брадикардию. Среди наиболее частых причин заболевания выделяют:

  • нарушения работы нервной и эндокринной систем;
  • высокое внутричерепное давление;
  • диагностирование гипоксии при рождении и тенденция к брадикардии во время беременности;
  • инфекционные болезни;
  • сильное переохлаждение;
  • большие дозировки сильнодействующих лекарственных препаратов либо их продолжительный прием;
  • быстрый рост внутренних органов;
  • нарушения кровообращения в мозге;
  • сбой в работе щитовидной железы.

Зачастую у ребенка частоты сердечных сокращений отклоняются от нормы после сильного испуга, долгой задержки дыхания и под влиянием пережитых за день ярких эмоций и событий. Эти явления носят временный характер и не свидетельствуют о патологии.

Заболевания сердца у детей, которые можно выявить при снятии ЭКГ

Исходя из показателей кардиограммы, врач может определить то или иное заболевание у ребенка.

Сбои сердечного ритма

В медицинской практике это состояние называют экстрасистолией. При этом пациент периодически чувствует учащение сердцебиения с его последующим замиранием. Внеочередное сокращение обусловлено нарушением проводимости сердечных импульсов.

При редких случаях приступов аритмии опасности для здоровья нет. Внимание следует обратить на регулярно повторяющиеся сбои сердечного ритма, сопровождающиеся отдышкой, болями и другими негативными симптомами.

Аритмия

При данной патологии возникают изменения периодичности синусового ритма, при этом поступление сердечных импульсов происходит с разной частотой. Аритмия иногда протекает бессимптомно, не требует особого лечения. Только в 30% случаев это состояние способно вызвать серьезные последствия для здоровья. На ЭКГ аритмия проявляется следующими отклонениями:

  • расстояние между интервалами RR более 0.16 сек;
  • отмечаются смежные интервалы RR;
  • между кардиоинтервалами от 0.3 до 0.6 сек;
  • разница между последовательными интервалами RR более 62%;
  • разница между максимальным и минимальным интервалом RR 780 мс за время записи 5 минут.

Брадикардия

Заболевание относится к видам аритмии, при этом у пациента отмечается снижение частоты сердечных сокращений до показателей 60 уд/мин и ниже. Иногда брадикардия объясняется записью ЭКГ во время сна. У пациентов с частотой сердечных сокращений менее 40 уд/мин отмечаются головокружения, вялость, обмороки, затруднение дыхания и другие неприятные симптомы.

Тахикардия

В отличие от брадикардии, это заболевание сопровождается ускорением частоты сердечного ритма. Временную тахикардию способны вызвать сильные физические нагрузки, психоэмоциональные перегрузки, инфекционные и вирусные заболевания, сопровождающиеся повышением температуры тела. В зависимости от возраста ребенка на тахикардию указывают следующие показатели:

  • новорожденные – выше 170 уд/мин;
  • дети до года – выше 160 уд/мин;
  • дети до 2 лет – выше 155 уд/мин;
  • 4-6 лет – выше 125 уд/мин;
  • 6-8 лет – выше 118 уд/мин;
  • 8-10 лет – выше 110 уд/мин;
  • 10-12 лет – 100 уд/мин;
  • 12-15 лет – выше 95 уд/мин.

При получении ЭКГ, указывающей на наличие тахикардии, часто проводят повторное исследование для подтверждения диагноза.

Нарушение проводимости сердца

В норме основным отделом сердца, по которому проходят электрические импульсы, возбуждающие предсердия и желудочки, является синусовый узел. При нарушении этого процесса пациент чувствует слабость, у ребенка отмечается снижение двигательной активности, головокружения, вялость, иногда потеря сознания.

В любом случае, после снятия ЭКГ ребенку, полученный результат необходимо показать лечащему доктору, который поставит или уточнит диагноз, назначит план лечения, установит дату контрольных мероприятий.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий